Problemas propuestos

9. Hallar el módulo y dirección de la velocidad y aceleración en:

(a)
$$x = e^t$$
, $y = e^{2t} - 4e^t + 3$ para $t = 0$

(b)
$$x = 2 - t$$
, $y = 2t^2 - t$ para $t = 1$

(c)
$$x = \cos 3t$$
, $y = \sin t$ para $t = \frac{1}{4}\pi$

(d)
$$x = e^t \cos t$$
, $y = e^t \sin t$ para $t = 0$

Sol. (a)
$$|\mathbf{v}| = \sqrt{5}$$
, $\tau = 296^{\circ} 34'$; $|\mathbf{a}| = 1$, $\phi = 0$

(b)
$$|\mathbf{v}| = \sqrt{26}, \tau = 101^{\circ} 19'; |\mathbf{a}| = 12, \phi = \frac{1}{2}\pi$$

(c)
$$|\mathbf{v}| = \sqrt{5}$$
, $\tau = 161^{\circ} 34'$; $|\mathbf{a}| = \sqrt{41}$, $\phi = 353^{\circ} 40'$

(d)
$$|\mathbf{v}| = \sqrt{2}$$
, $\tau = \frac{1}{2}\pi$; $|\mathbf{a}| = 2$, $\phi = \frac{1}{2}\pi$

10. Una partícula se mueve sobre el primer cuadrante del arco de parábola $y^2 = 12x \operatorname{con} v_x = 15$. Hallar v_y , $|\mathbf{v}|$, τ ; $a_x a_y$, $|\mathbf{a}|$, $y \phi$ en el punto (3, 6).

Sol.
$$v_y = 15$$
, $|\mathbf{v}| = 15\sqrt{2}$, $\tau = \frac{1}{4}\pi$; $a_x = 0$, $a_y = -75/2$, $|\mathbf{a}| = 75/2$, $\phi = 3\pi/2$.

11. Una partícula se mueve a lo largo de la parábola cúbica $y = x^3/3$ con una componente de velocidad $v_x = 2$ constante. Hallar el módulo y dirección de la velocidad y de la aceleración cuando x = 3.

Sol.
$$|\mathbf{v}| = 2\sqrt{82}$$
, $\tau = 83^{\circ} 40'$; $|\mathbf{a}| = 24$, $\phi = \frac{1}{2}\pi$

- 12. Una partícula se mueve a lo largo de una circunferencia de 6 metros de radio con una velocidad constante de 4 metros por segundo. Hallar el módulo de su aceleración en un punto cualquiera. Sol. $|a_i| = 0$, $|a| = |a_n| = 8/3$ m/s².
- 13. Hallar el módulo y dirección de la velocidad y de la aceleración así como los módulos de las componentes tangencial y normal de la aceleración del movimiento definido por

(a)
$$x = 3t$$
, $y = 9t - 3t^2$, para $t = 2$

(b)
$$x = \cos t + \sin t$$
, $y = \sin t - t \cos t$ cuando $t = 1$.

Sol. (a)
$$|\mathbf{v}| = 3\sqrt{2}$$
, $\tau = 7\pi/4$; $|\mathbf{a}| = 6$, $\phi = 3\pi/2$; $|a_t| = |a_n| = 3\sqrt{2}$

(b)
$$|\mathbf{v}| = 1$$
, $\tau = 1$; $|\mathbf{a}| = \sqrt{2}$, $\phi = 102^{\circ} 18'$; $|a_t| = |a_n| = 1$

14. Una partícula se mueve a lo largo de la curva $y = \frac{1}{2}x^2 - \frac{1}{4} \ln x$ de tal forma que $x = \frac{1}{2}t^2$, t > 0. Hallar v_x , v_y , $|\mathbf{v}|$, τ ; a_x , a_y , $|\mathbf{a}|$, ϕ ; $|a_t|$ y $|a_n|$ cuando t = 1.

Sol.
$$v_x = 1$$
, $v_y = 0$, $|\mathbf{v}| = 1$, $\tau = 0$; $a_x = 1$, $a_y = 2$, $|\mathbf{a}| = \sqrt{5}$, $\phi = 63^{\circ} 26'$; $|a_t| = 1$, $|a_n| = 2$.

15. Una partícula se mueve a lo largo de la curva $y = 2x - x^2$ con una componente de velocidad $v_x = 4$ constante. Hallar los módulos de las componentes tangencial y normal de la aceleración en la posición (a) (1, 1) y (b) (2, 0).

Sol. (a)
$$|a_i| = 0$$
, $|a_n| = 32$; (b) $|a_i| = 64/\sqrt{5}$, $|a_n| = 32/\sqrt{5}$